Spatial long-term memory is related to mossy fiber synaptogenesis.

نویسندگان

  • V Ramírez-Amaya
  • I Balderas
  • J Sandoval
  • M L Escobar
  • F Bermúdez-Rattoni
چکیده

Structural synaptic changes have been suggested to underlie long-term memory formation. In this work, we investigate if hippocampal mossy fiber synaptogenesis induced by water maze overtraining can be related with long-term spatial memory performance. Rats were trained in a Morris water maze for one to five identical daily sessions and tested for memory retrieval 1 week and 1 month after training. After the last test session, the rat brains were obtained and processed for Timm's staining to analyze mossy fiber projection. The behavioral results showed that with more training, animals showed a better performance in the memory tests, and this performance positively correlates with Timm's staining in the stratum oriens. Furthermore, with the use of the NMDA antagonist MK801 before, but not after acquisition, water maze spatial memory was impaired. Increased Timm's staining in the stratum oriens was observed in the animals treated with MK801 after acquisition but not in those treated before. Finally, we observed that mossy fiber synaptogenesis occurs mainly in the septal region of the dorsal hippocampus, supporting the idea that this anterior region is important for spatial memory. Altogether, these results suggest that mossy fiber synaptogenesis can be related with spatial long-term memory formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of agonist and antagonist of Nociceptine/Orphanin FQ receptor on seizure and cognitive dysfunction in experimental model of temporal lobe epilepsy in male rat

Background: Temporal lobe epilepsy is a chronic neurological disorder characterized by spontaneous seizures, learning and memory deficiency, loss of neurons, mossy fiber sprouting and tissue apoptosis. This study was to investigate the effect of NOP receptor agonist (MCOPPB) and antagonist (SB612111) on seizure and cognitive dysfunction and histological studies in experimental model of temporal...

متن کامل

Long-term but not short-term plasticity at mossy fiber synapses is impaired in neural cell adhesion molecule-deficient mice (cell adhesion moleculesyfrequency facilitationypaired-pulse facilitationylong-term potentiationyexcitatory synapses)

Cell adhesion molecules (CAMs) are known to be involved in a variety of developmental processes that play key roles in the establishment of synaptic connectivity during embryonic development, but recent evidence implicates the same molecules in synaptic plasticity of the adult. In the present study, we have used neural CAM (NCAM)-deficient mice, which have learning and behavioral deficits, to e...

متن کامل

Removal of polysialic acid-neural cell adhesion molecule induces aberrant mossy fiber innervation and ectopic synaptogenesis in the hippocampus.

The mossy fiber axons of both the developing and adult dentate gyrus express the highly polysialylated form of neural cell adhesion molecule (NCAM) as they innervate the proximal apical dendrites of pyramidal cells in the CA3 region of the hippocampus. The present study used polysialic acid (PSA)-deficient and NCAM mutant mice to evaluate the role of PSA in mossy fiber development. The results ...

متن کامل

Role of Sialidase in Long-Term Potentiation at Mossy Fiber-CA3 Synapses and Hippocampus-Dependent Spatial Memory

Sialic acid bound to glycans in glycolipids and glycoproteins is essential for synaptic plasticity and memory. Sialidase (EC 3.2.1.18), which has 4 isozymes including Neu1, Neu2, Neu3 and Neu4, regulates the sialylation level of glycans by removing sialic acid from sialylglycoconjugate. In the present study, we investigated the distribution of sialidase activity in rat hippocampus and the role ...

متن کامل

A genetic test of the effects of mutations in PKA on mossy fiber ltp and its relation to spatial and contextual learning

Using a genetic approach, we assessed the effects of mutations in protein kinase A (PKA) on long-term potentiation (LTP) in the mossy fiber pathway and its relationship to spatial and contextual learning. Ablation by gene targeting of the C beta 1 or the RI beta isoform of PKA produces a selective defect in mossy fiber LTP, providing genetic evidence for the role of these isoforms in the mossy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 21 18  شماره 

صفحات  -

تاریخ انتشار 2001